Weak equivalence of functions over a finite field

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeta functions of equivalence relations over finite fields

We prove the rationality of the generating function associated to the number of equivalence classes of Fqk -points of a constructible equivalence relation defined over the finite field Fq . This is a consequence of the rationality of Weil zeta functions and of first-order formulas, together with the existence of a suitable parameter space for constructible families of constructible sets.

متن کامل

On the Generalized Linear Equivalence of Functions Over Finite Fields

In this paper we introduce the concept of generalized linear equivalence between functions defined over finite fields; this can be seen as an extension of the classical criterion of linear equivalence, and it is obtained by means of a particular geometric representation of the functions. After giving the basic definitions, we prove that the known equivalence relations can be seen as particular ...

متن کامل

Periods of Iterated Rational Functions over a Finite Field

If f is a polynomial of degree d in Fq[x], let ck(f) be the number of cycles of length k in the directed graph on Fq with edges {(v, f(v))}v∈Fq . For random polynomials, the numbers ck, 1 ≤ k ≤ b, have asymptotic behavior resembling that for the cycle lengths of random functions f : [q] → [q]. However random polynomials differ from random functions in important ways. For example, given the set ...

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$.

متن کامل

enumerating algebras over a finite field

‎we obtain the porc formulae for the number of non-associative algebras‎ ‎of dimension 2‎, ‎3 and 4 over the finite field gf$(q)$‎. ‎we also give some‎ ‎asymptotic bounds for the number of algebras of dimension $n$ over gf$(q)$‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 1979

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa-35-3-259-272